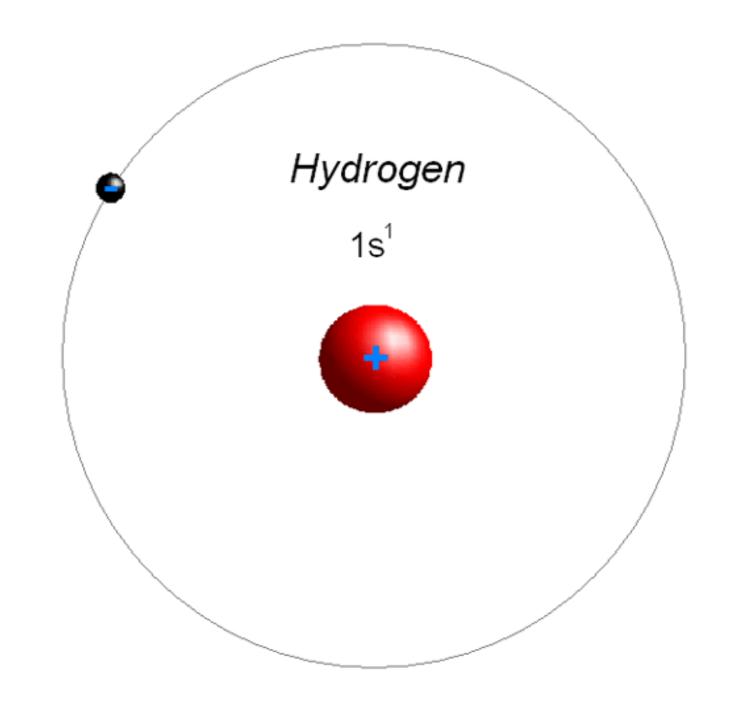
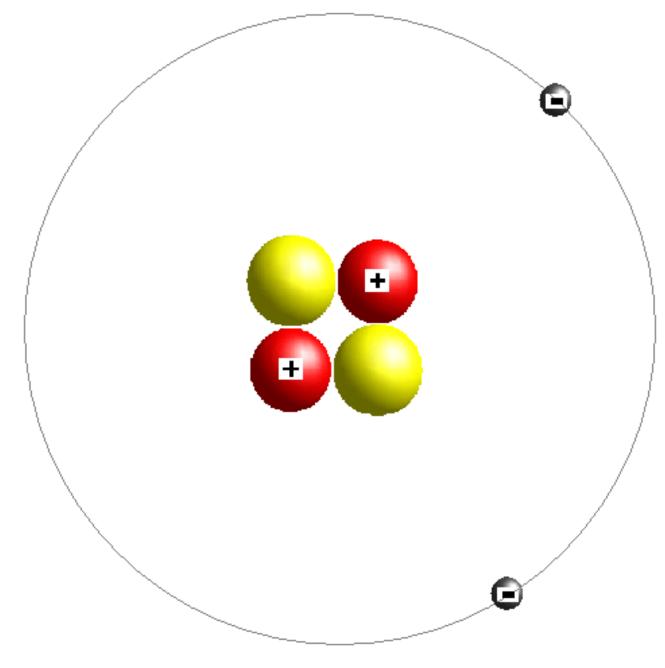
The Birth of the First Elements

THE LITHIUM CONUNDRUM

Abergavenny Astronomy Society


Periodic Table of the Elements


hydrogen 1	377		170	8572	252	ē	1173	s	270	570	9.572	1.77	9.50	798	9.74	107	915	helium 2
Ĥ																		He
1.0079 lithium	beryllium											î	boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4												5	6	7	8	9	10
Li	Be												В	C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
5000														7555			3888	10000
Na	Mg												ΑI	Si	Р	S	CI	Ar
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32,065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
	5-65-75-75		500000000000000000000000000000000000000			17.50.200.000	55 mg/gm	111	ns. 277923	State of the state		9.235 120		1000	0**********	200	33	55 C C C C C C C C C C C C C C C C C C
Rb	Sr		Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
200000	1000000	1000 11100	-				120,700		1.2		_	500000	TI					
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	- 11	Pb	Bi	Ро	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		ununquadium 114				
Fr	Ra	* *	Lr	Rf	Db	050000000	Bh	Hs	Mt		Uuu			Uuq				
		// //				Sg	100000000000000000000000000000000000000	ALCOHOLD STREET	Harris St. Printer St. Co.					100000000000000000000000000000000000000				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]	I.			

*Lanthanide series

* * Actinide series

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
-	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
ı	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
-	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
J	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Helium atom

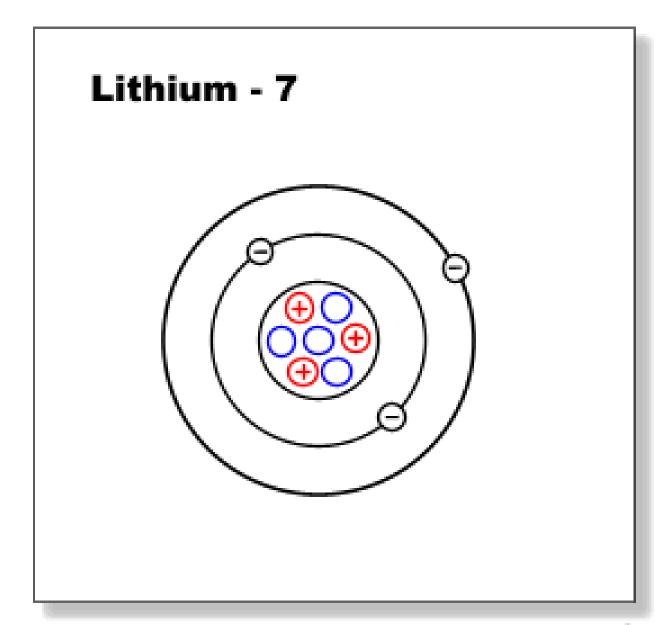
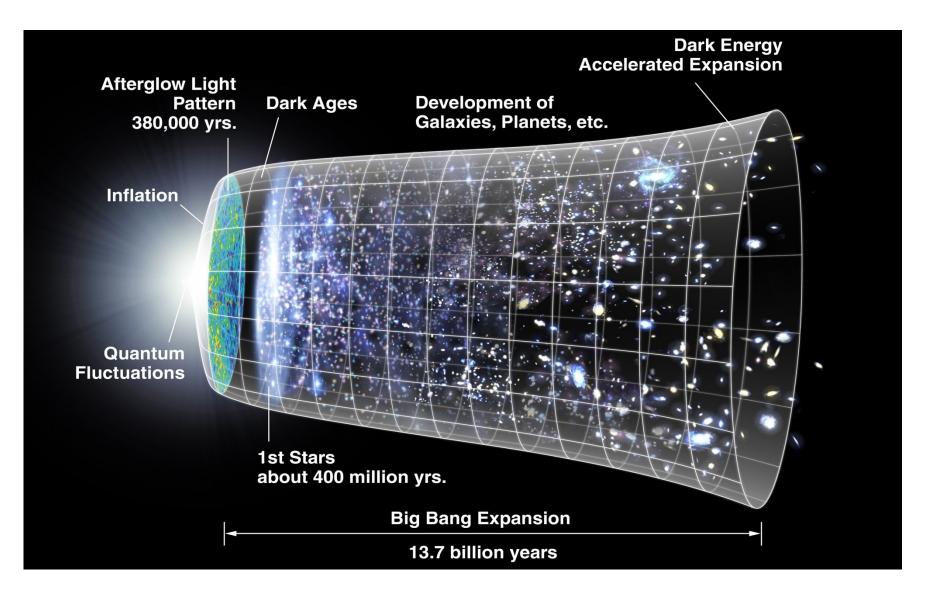



Figure 4

Universal Timeline

The Origin of Chemical Elements

R. A. ALPHER*

Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland

AND

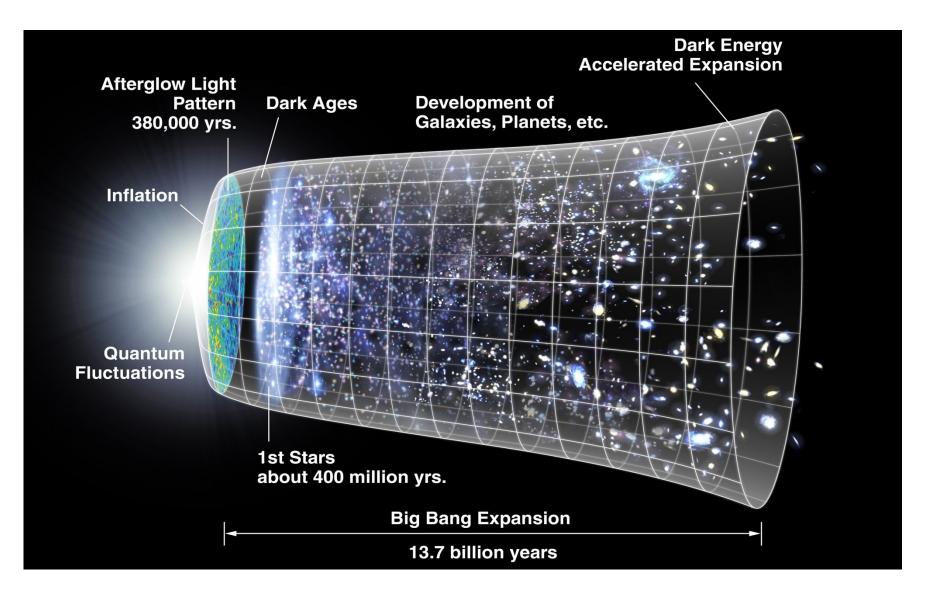
H. BETHE

Cornell University, Ithaca, New York

AND

G. GAMOW

The George Washington University, Washington, D. C. February 18, 1948


In their original paper and follow up articles Alpher, Betha and Gamow:

Formulated the theory of "Big Bang Nucleosynthesis" as opposed to Stellar Nucleosynthesis

Calculated that BBN was completed by 13 minutes after the Big Bang.

current models and observations calculate this to have been completed 10 – 20 minutes after the big bang.

Universal Timeline

In the very early Universe the temperature was so great that all matter was fully ionized and dissociated.

In the very early Universe the temperature was so great that all matter was fully ionized and dissociated.

Roughly three minutes after the Big Bang itself, the temperature of the Universe rapidly cooled from its phenomenal 10 32 Kelvin to approximately 10 9 Kelvin.

In the very early Universe the temperature was so great that all matter was fully ionized and dissociated.

Roughly three minutes after the Big Bang itself, the temperature of the Universe rapidly cooled from its phenomenal 10 32 Kelvin to approximately 10 9 Kelvin.

At this temperature, nucleosynthesis, or the production of light elements, could take place.

Big Bang Nucleosynthesis

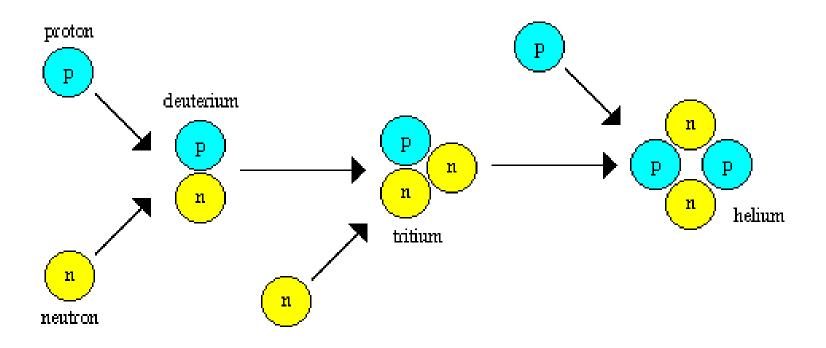
(or **primordial nucleosynthesis**, abbreviated BBN) refers to the production of nuclei other than those of H-1 (i.e. the normal, light isotope of hydrogen, whose nuclei consist of a single proton each) during the early phases of the universe.

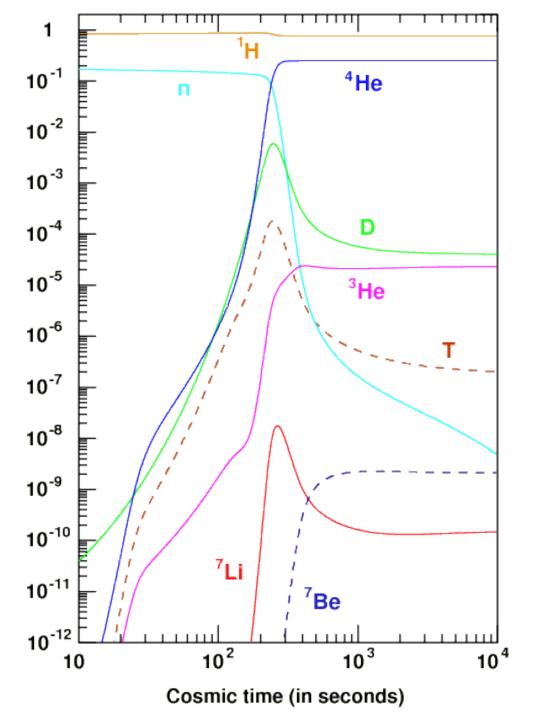
Big Bang Nucleosynthesis

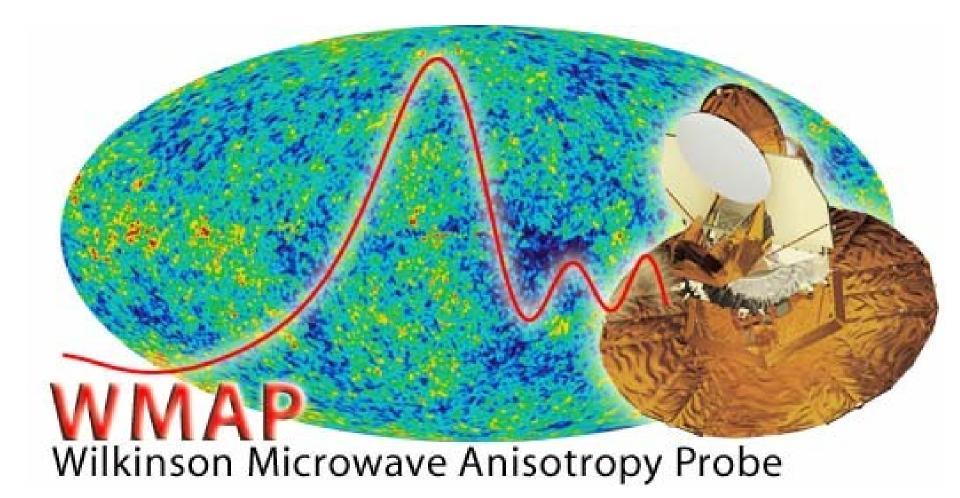
(or **primordial nucleosynthesis**, abbreviated BBN) refers to the production of nuclei other than those of H-1 (i.e. the normal, light isotope of hydrogen, whose nuclei consist of a single proton each) during the early phases of the universe.

Primordial nucleosynthesis is believed by many scientists to have taken place just a few moments after the Big Bang and is believed to be responsible for the formation of a heavier isotope of hydrogen known as deuterium(H-2 or D), the helium isotopes He-3 and He-4, and the lithium isotopes Li-6 and Li-7.

Big Bang Nucleosynthesis

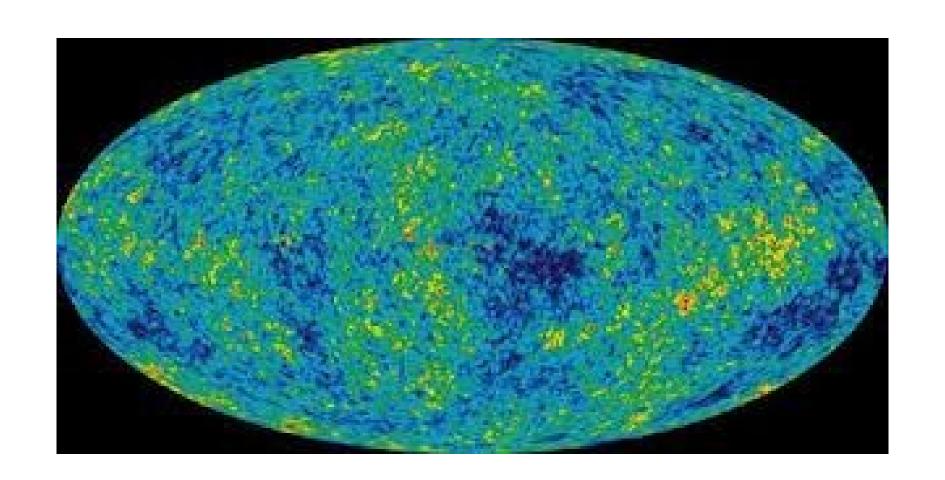

(or **primordial nucleosynthesis**, abbreviated BBN) refers to the production of nuclei other than those of H-1 (i.e. the normal, light isotope of hydrogen, whose nuclei consist of a single proton each) during the early phases of the universe.


Primordial nucleosynthesis is believed by many scientists to have taken place just a few moments after the Big Bang and is believed to be responsible for the formation of a heavier isotope of hydrogen known as deuterium(H-2 or D), the helium isotopes He-3 and He-4, and the lithium isotopes Li-6 and Li-7.


In addition to these stable nuclei some unstable, or radioactive isotopes were also produced during the BBN: tritium H-3; beryllium (Be-7), and beryllium-8 (Be-8). These unstable isotopes either decayed or fused with other nuclei to make one of the stable isotopes.

Nucleosynthesis

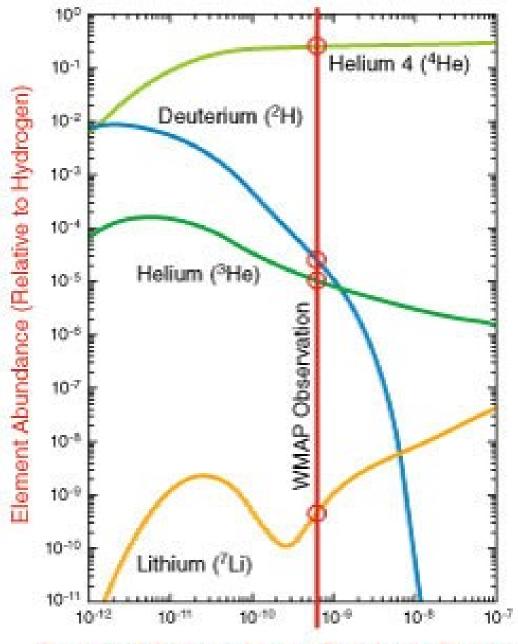
as the Universe cools, protons and neutrons can fuse to form heavier atomic nuclei



WMAP was launched on June 30, 2001 from the Cape Canaveral Air Force Base aboard a Delta II

rocket. The WMAP objective was to measure the temperature differences in the Cosmic Microwave Background (CMB) radiation. The anisotropies then are used to measure the universe's geometry, content, and evolution; and to test the Big Bang model, and the cosmic inflation theory.

As of October 2010, the WMAP spacecraft is in a graveyard orbit after 9 years of operations.


Baryon-photon ratio, (η) .

The baryon-photon ratio is a strong indicator of the abundance of light elements present in the early universe. Baryons can react with light elements in the following reactions:

$$(n,p) + 2H \rightarrow (3He, 3H)$$

$$(3He, 3H) + (n,p) \rightarrow 4He$$

It is evident that reactions with baryons during BBN will ultimately result in Helium-4, and also that the abundance of primordial deuterium is indirectly related to the baryon density or baryon-photon ratio. That is, the larger the baryon-photon ratio the more reactions there will be and the more deuterium will be eventually transformed into Helium-4. This result makes deuterium a very useful tool in measuring the baryonic change of the universe.

Density of Ordinary Matter (Relative to Photons)

Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud

Christopher Howk, Nicolas Lehner, Brian D. Fields & Grant J. Mathews

Nature 489, 121–123 (06 September 2012)

The primordial abundances of light elements produced in the standard theory of Big Bang nucleosynthesis (BBN) depend only on the cosmic ratio of baryons to photons, a quantity inferred from observations of the microwave background. The predicted

primordial 7Li abundance is four times that measured in the atmospheres of Galactic halo stars. This discrepancy could be caused by modification of surface lithium abundances during the stars' lifetimes or by physics beyond the Standard Model that affects early nucleosynthesis. The lithium abundance of low-metallicity gas provides an alternative constraint on the primordial abundance and cosmic evolution of lithium that is not susceptible to the *in situ* modifications that may affect stellar atmospheres. Here we report observations of interstellar 7Li in the low-metallicity gas of the Small Magellanic Cloud, a nearby galaxy with a quarter the Sun's metallicity.

The Small Magallenic Cloud

The **Small Magellanic Cloud** (SMC) is a dwarf galaxy in the southern constellation Toucana.

The Small Magallenic Cloud

The **Small Magellanic Cloud** (SMC) is a dwarf galaxy in the southern constellation Toucana.

It is some 200,000 light-years away, has a diameter of about 7,000 light-years and contains several hundred million stars.

The Small Magallenic Cloud

The **Small Magellanic Cloud** (SMC) is a dwarf galaxy in the southern constellation Toucana.

It is some 200,000 light-years away, has a diameter of about 7,000 light-years and contains several hundred million stars.

The stars have approximately one quarter the heavier element abundance than our own star.

Relative Abundance of Lithium (Li/H) Traditional "Early" Spectral WMAP Recent Paper Analysis 10-9 2-3 x 10-10 2.4 x 10-10 10 - 8.99 (±0.13)

Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud

Christopher Howk, Nicolas Lehner, Brian D. Fields & Grant J. Mathews

Nature 489, 121–123 (06 September 2012)

The primordial abundances of light elements produced in the standard theory of Big Bang nucleosynthesis (BBN) depend only on the cosmic ratio of baryons to photons, a quantity inferred from observations of the microwave background. The predicted

primordial 7Li abundance is four times that measured in the atmospheres of Galactic halo stars. This discrepancy could be caused by modification of surface lithium abundances during the stars' lifetimes or by physics beyond the Standard Model that affects early nucleosynthesis. The lithium abundance of low-metallicity gas provides an alternative constraint on the primordial abundance and cosmic evolution of lithium that is not susceptible to the *in situ* modifications that may affect stellar atmospheres. Here we report observations of interstellar 7Li in the low-metallicity gas of the Small Magellanic Cloud, a nearby galaxy with a quarter the Sun's metallicity. The present-day 7Li abundance of the Small Magellanic Cloud is nearly equal to the BBN predictions, severely constraining the amount of possible subsequent enrichment of the gas by stellar and cosmic-ray nucleosynthesis. Our measurements can be reconciled with standard BBN with an aytromaly finatunad danlatian of stallar Li with matallicity. Thay