

VARIABLE STARS

- What are the goals of this talk:
- Outline the main reasons for variability.
- Examples of what science can be achieved by large numbers of amateur observations.
- What is necessary in order to measure the brightness of a star accurately.
- Tools and systems for observing and finding variables
- Organisations that collect data and produce plots.
- Quick example of the process I use.
- Not: Science of Photometry or Imaging and Image processing or the science of the variable types.

First – just a bit about star names

- Some cryptic notations are used to name variables and in fact stars may have many names!
- Most common -
 - "AM Cas"
 - First two letters or just one, are an identifier
 - Second three are the constellation Cassiopeia
- Another common form-
 - V0245 Cas
 - The identifier is just V for variable and a 4 digit number.

Why are some stars variable?

Two common reasons:

- The star itself is changing (intrinsic)
- The star is rotating or is in a binary pair (extrinsic)

Why are some stars variable?

Variable stars are frequently divided into five main classes:

intrinsic

pulsating,
cataclysmic,
eruptive variables,

extrinsic

eclipsing binary rotating stars.

How important are amateur measurements?

What the readings of one observer look like?

Volume of data is critical to science

The understanding of the mechanics of binary systems can be calculated from this data.

What can we derive from light curves?

- Rotation rates of the binary pair.
 - Size of each of the stars or planets
 - Separation distance
 - Relative mass
 - Possible exchange of material between the components

My particular interest, binaries Type EA EB & EW

Type EA Binary

How easy is it to take measurements?

- It can be as easy or hard as you, want:
 - Visual by just comparing two or three stars using binoculars or a telescope
 - Using a SLR or CCD camera or webcam on your telescope
 - Using one of the many robotic telescopes like:
 - Faulkes
 - Liverpool telescope
 - Bradford robotic scope

Basics of magnitude measurement

- Photometry is the collective term for measurement of star brightness
- What is important:
 - To decide what sort of measurement you will make in what colour spectrum
 - Visual by eye
 - Camera: what colours and what optical response
 - Filters filters compliance with a standard
 - CCD response
 - Telescope non linearities
 - Calibration
- Decide on a small selection of variable stars to study
- Decide if you just want to produce your own light curve or contribute to science as a wider group.

Information sources

- BAA has a variable star section
- AAVSO has a complete automated data collection and display process.
 - To obtain access to existing data
 - To get well calibrated reference stars
 - To manage your input data

Variable Star Plotter (VSP)

Printable Version
Return & Replot

Field Photometry for UU AND From the AAVSO Variable Star Database

Data includes all comparison stars within 0.25000° of RA: 0:43:45.06 (10.93775) & Decl.: 30:56:19.61 (30.93878).

AUID	RA.	Dec.	Label	U	В	V	B-V	Rc	lc	J	Н	K	Comments
000- BKJ- 952	0:43:24.52 [10.85217d]	30:53:59.7 [30.89992d]	109	-	11.407 (0 <u>.</u> 111) ²⁹	10.888 (0.061) ²⁹	0.519 (0.127)	10.510 (0.091) ²⁹	10.155 (0.113) ²⁹	-	_	-	
000- BKJ- 953	0:43:41.33 [10.92221d]	31:07:26.9 [31.12414d]	116	-	12.312 (0.156) ²⁹	11.559 (0.079) ²⁹	0.753 (0.175)	11.084 (0.131) ²⁹	10.640 (0.167) ²⁹	-	_	-	
000- BKJ- 954	0:44:23.60 [11.09833d]	30:55:27.6 [30.92433d]	120	-	12.650 (0.095) ²⁹	12.028 (0.046) ²⁹	0.622 (0.106)	11.624 (0.072) ²⁹	11.245 (0.090) ²⁰	-	_	-	
000- BKJ-	0:44:02.90	30:48:42.4	123		12.899 (0.087)	12.347 (0.041)	0.552	11.968	11.612 (0.089)				

Making the first step!

Making the first step!

You look through your telescope and find the star you have selected to measure. You may need to find it In a finder scope in low power first by star hopping.

- The way to estimate magnitude visually is by comparison with known similar magnitude stars.
- Where do you get this data from?
 BAA Variable star section
 American Assoc of Variable star observers AAVSO
- All information is available on the web.

CCD or Camera measurements

- Much more sensitive than the human eye.
- Stars are all different colours:
 - Comparing stars of different colour will require a correction
 - CCD images are never completely flat across the chip
 - If filters are used they need to match the reference star filter colour (Called Johnson V)
 - The thickness of the atmosphere needs to be taken into account if reference stars are far apart or < 30deg.
- Standard correction processes are used to ensure accuracy.

Star Colour

- Ranges from Blue to Red
- The reference V (Green) values are:
 - Johnson V filter
 - Close to the spectrum centre of the human eye

A 'Flat' taken using a flat light source in front of the telescope and 5 second exposure

The image shows only the first 5000 counts in 60000 taken through a green filter (Johnson V)

You can't stop dust so just flatten and remove imperfections using 'FLAT' data.

5620

Affinosoheke

My methodology

American Association of Variable Star Observers

Home Contact Us FAQ Donate Amazon

Home » Light Curve Generator (LCG)

Print This Page

B

Light Curve Generator (LCG)

- Plot another light curve
 Search Quick Look for EPS AUR
 Create star chart for EPS AUR
 Search VSX for EPS AUR
- AAVSO DATA FOR EPS AUR WWW.AAVSO.ORG 2.8 3 3.2 3.4 Magnitude 4.2 4.6 L... 01/01/11 03/01/11 05/01/11 09/01/11 01/01/12 03/01/12 05/01/12 07/01/12 09/01/12 11/01/11 Date Visual Validated Visual Prevalidated V Prevalidated Obs by MJHN B Prevalidated

The f	ollowing observers have	contributed to this	light cur	ve:				
AALA	ABOUZAHR, ALESSANDRA	USA, AAVSO	AANB	ALTMAN, ANDREW	USA, AAVSO	AAP	ABBOTT, PATRICK	CANADA,
BNA	ABU-EID, BADER	USA, AAVSO	ACMA	ALVAREZ, CRISTINA	USA, AAVSO	ADEA	AKTAS, DENIZ	USA, AAVSO
district							ALCHOS AND BURNES	
MJAD	MORRIS, JAMEELAH	USA, AAVSO	MJFA	MEE, JENNIFER	USA, AAVSO	МЈНА	MCCAMMON, JOHN	USA, AAVSO
JHN	MALLETT, JOHN	UK, BAA-VSS	MJOA	MACLENNAN, JOHN	USA, AAVSO	MJTA	MCLAUGHLIN, JOHN	USA, AAVSO
ИКАА	MOSER, KATE	USA, AAVSO	MLIA	MERCHAN, LIZZETH	USA, AAVSO	MMAC	MCKINNON, MICHAEL	USA, AAVSO
MMGA	MILLER, MICHAEL	USA,	MMIA	MARTINEZ, MIKE	USA, AAVSO	ммкв	MAHER, MEAGAN	USA, AAVSO
MNAA	MILSTEIN, NATALIE	USA, AAVSO	MNIB	MARSHALL, NICHOLAS	USA, AAVSO	MNRA	MARCHAND, NATHANIEL	USA, AAVSO

A great example..

Des Loughney – October 2009

Made hundreds of measurements over 2 years to assist the discovery of the structure of Eps Aur binary.

Estimates of the 7/10/09 JD: 2455111.471

Camera Settings with an 85 mm lens: Exposure-5 seconds, ISO 200, f5.

5 sets of ten images: Analysed with AIP4WIN v2.3

- (1) 3.294V
- (2) 3.315V
- (3) 3.292V
- (4) 3.304V
- (5) 3.285V

